Spatial attention guided cGAN for improved salient object detection

Author:

Dhara Gayathri,Kumar Ravi Kant

Abstract

Recent research shows that Conditional Generative Adversarial Networks (cGANs) are effective for Salient Object Detection (SOD), a challenging computer vision task that mimics the way human vision focuses on important parts of an image. However, implementing cGANs for this task has presented several complexities, including instability during training with skip connections, weak generators, and difficulty in capturing context information for challenging images. These challenges are particularly evident when dealing with input images containing small salient objects against complex backgrounds, underscoring the need for careful design and tuning of cGANs to ensure accurate segmentation and detection of salient objects. To address these issues, we propose an innovative method for SOD using a cGAN framework. Our method utilizes encoder-decoder framework as the generator component for cGAN, enhancing the feature extraction process and facilitating accurate segmentation of the salient objects. We incorporate Wasserstein-1 distance within the cGAN training process to improve the accuracy of finding the salient objects and stabilize the training process. Additionally, our enhanced model efficiently captures intricate saliency cues by leveraging the spatial attention gate with global average pooling and regularization. The introduction of global average pooling layers in the encoder and decoder paths enhances the network's global perception and fine-grained detail capture, while the channel attention mechanism, facilitated by dense layers, dynamically modulates feature maps to amplify saliency cues. The generated saliency maps are evaluated by the discriminator for authenticity and gives feedback to enhance the generator's ability to generate high-resolution saliency maps. By iteratively training the discriminator and generator networks, the model achieves improved results in finding the salient object. We trained and validated our model using large-scale benchmark datasets commonly used for salient object detection, namely DUTS, ECSSD, and DUT-OMRON. Our approach was evaluated using standard performance metrics on these datasets. Precision, recall, MAE and score metrics are used to evaluate performance. Our method achieved the lowest MAE values: 0.0292 on the ECSSD dataset, 0.033 on the DUTS-TE dataset, and 0.0439 on the challenging and complex DUT-OMRON dataset, compared to other state-of-the-art methods. Our proposed method demonstrates significant improvements in salient object detection, highlighting its potential benefits for real-life applications.

Publisher

Frontiers Media SA

Reference65 articles.

1. A progressive approach to generic object detection: a two-stage framework for image recognition;Aamir;Comp. Mater. Continua,2023

2. “Wasserstein generative adversarial networks,”;Arjovsky,2017

3. Segnet: A deep convolutional encoder-decoder architecture for image segmentation;Badrinarayanan;IEEE Trans. Pattern Anal. Mach. Intell,2017

4. State-of-the-art in visual attention modeling;Borji;IEEE Trans. Pattern Anal. Mach. Intell,2012

5. “Ball detection using yolo and mask R-CNN,”;Buric,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3