Discovering Key Topics From Short, Real-World Medical Inquiries via Natural Language Processing

Author:

Ziletti A.,Berns C.,Treichel O.,Weber T.,Liang J.,Kammerath S.,Schwaerzler M.,Virayah J.,Ruau D.,Ma X.,Mattern A.

Abstract

Millions of unsolicited medical inquiries are received by pharmaceutical companies every year. It has been hypothesized that these inquiries represent a treasure trove of information, potentially giving insight into matters regarding medicinal products and the associated medical treatments. However, due to the large volume and specialized nature of the inquiries, it is difficult to perform timely, recurrent, and comprehensive analyses. Here, we combine biomedical word embeddings, non-linear dimensionality reduction, and hierarchical clustering to automatically discover key topics in real-world medical inquiries from customers. This approach does not require ontologies nor annotations. The discovered topics are meaningful and medically relevant, as judged by medical information specialists, thus demonstrating that unsolicited medical inquiries are a source of valuable customer insights. Our work paves the way for the machine-learning-driven analysis of medical inquiries in the pharmaceutical industry, which ultimately aims at improving patient care.

Funder

Bayer

Publisher

Frontiers Media SA

Reference50 articles.

1. Detection of Cases of Noncompliance to Drug Treatment in Patient Forum Posts: Topic Model Approach;Abdellaoui;J. Med. Internet Res.,2018

2. Evaluating Topic Coherence Using Distributional Semantics;Aletras,2013

3. A Brief Survey of Text Mining: Classification, Clustering and Extraction Techniques;Allahyari,2017

4. Publicly Available Clinical BERT Embeddings;Alsentzer,2019

5. Top2vec: Distributed Representations of Topics;Angelov,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3