Self-attention in vision transformers performs perceptual grouping, not attention

Author:

Mehrani Paria,Tsotsos John K.

Abstract

Recently, a considerable number of studies in computer vision involve deep neural architectures called vision transformers. Visual processing in these models incorporates computational models that are claimed to implement attention mechanisms. Despite an increasing body of work that attempts to understand the role of attention mechanisms in vision transformers, their effect is largely unknown. Here, we asked if the attention mechanisms in vision transformers exhibit similar effects as those known in human visual attention. To answer this question, we revisited the attention formulation in these models and found that despite the name, computationally, these models perform a special class of relaxation labeling with similarity grouping effects. Additionally, whereas modern experimental findings reveal that human visual attention involves both feed-forward and feedback mechanisms, the purely feed-forward architecture of vision transformers suggests that attention in these models cannot have the same effects as those known in humans. To quantify these observations, we evaluated grouping performance in a family of vision transformers. Our results suggest that self-attention modules group figures in the stimuli based on similarity of visual features such as color. Also, in a singleton detection experiment as an instance of salient object detection, we studied if these models exhibit similar effects as those of feed-forward visual salience mechanisms thought to be utilized in human visual attention. We found that generally, the transformer-based attention modules assign more salience either to distractors or the ground, the opposite of both human and computational salience. Together, our study suggests that the mechanisms in vision transformers perform perceptual organization based on feature similarity and not attention.

Funder

Air Force Office of Scientific Research

Canada Research Chairs

Natural Sciences and Engineering Research Council of Canada

Publisher

Frontiers Media SA

Subject

Computer Science Applications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Computer Science (miscellaneous)

Reference110 articles.

1. “Quantifying attention flow in transformers,”;Abnar;Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,2020

2. Stop paying attention to “attention”;Anderson;Wiley Interdiscip. Rev. Cogn. Sci,2023

3. Perception of an object's global shape is best described by a model of skeletal structure in human infants;Ayzenberg;Elife,2022

4. Overriding stimulus-driven attentional capture;Bacon;Percept. Psychophys,1994

5. Local features and global shape information in object classification by deep convolutional neural networks;Baker;Vision Res,2020

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3