Early steps toward practical subsurface computations with quantum computing

Author:

Greer Sarah,O'Malley Daniel

Abstract

Quantum computing exploits quantum mechanics to perform certain computations more efficiently than classical computers. Current quantum computers have performed carefully tailored computational tasks that would be difficult or impossible for even the fastest supercomputers in the world. This “quantum supremacy” result demonstrates that quantum computing is more powerful than classical computing in some computational regimes. At present, it is unknown if any computational problems related to the Earth's subsurface fall within these regimes. Here, we describe an approach to performing seismic inverse analysis that combines a type of quantum computer called a quantum annealer with classical computing. This approach improves upon past work on applying quantum computing to the subsurface (via subsurface hydrology) in two ways. First, the seismic inverse problem enables better performance from the quantum annealer because of the Earth's relatively narrow distribution of P-wave velocities compared to the broad distribution of hydraulic conductivities. Second, we develop an iterative approach to quantum-computational inverse analysis, which works with a realistic set of observations. By contrast, the previous method used an inverse method that depended on an impractically dense set of observations. In combination, these two advances significantly narrow the gap a quantum-computational advantage for a practical subsurface geoscience problem. Closing the gap completely requires more work, but has the potential to dramatically accelerate inverse analyses for subsurface geoscience.

Publisher

Frontiers Media SA

Subject

Computer Science Applications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Computer Science (miscellaneous)

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3