Object surface roughness/texture recognition using machine vision enables for human-machine haptic interaction

Author:

Lin Zixuan,Zheng Haowei,Lu Yue,Zhang Jiaji,Chai Guohong,Zuo Guokun

Abstract

Tactile feedback can effectively improve the controllability of an interactive intelligent robot, and enable users to distinguish the sizes/shapes/compliance of grasped objects. However, it is difficult to recognize object roughness/textures through tactile feedback due to the surface features cannot be acquired with equipped sensors. The purpose of this study is to investigate whether different object roughness/textures can be classified using machine vision and utilized for human-machine haptic interaction. Based on practical application, two classes of specialized datasets, the roughness dataset consisted of different spacing/shapes/height distributions of the surface bulges and the texture dataset included eight types of representative surface textures, were separately established to train the respective classification models. Four kinds of typical deep learning models (YOLOv5l, SSD300, ResNet18, ResNet34) were employed to verify the identification accuracies of surface features corresponding to different roughness/textures. The human fingers' ability to objects roughness recognition also was quantified through a psychophysical experiment with 3D-printed test objects, as a reference benchmark. The computation results showed that the average roughness recognition accuracies based on SSD300, ResNet18, ResNet34 were higher than 95%, which were superior to those of the human fingers (94% and 91% for 2 and 3 levels of object roughness, respectively). The texture recognition accuracies with all models were higher than 84%. Outcomes indicate that object roughness/textures can be effectively classified using machine vision and exploited for human-machine haptic interaction, providing the feasibility of functional sensory restoration of intelligent robots equipped with visual capture and tactile stimulation devices.

Publisher

Frontiers Media SA

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3