Author:
Ho C. J.,Lim J.,Sauer B. E.,Tarbutt M. R.
Abstract
Theories that extend the Standard Model of particle physics often introduce new interactions that violate charge-parity (CP) symmetry. Charge-parity-violating effects within an atomic nucleus can be probed by measuring its nuclear magnetic quadrupole moment (MQM). The sensitivity of such a measurement is enhanced when using a heavy polar molecule containing a nucleus with quadrupole deformation. We determine how the energy levels of a molecule are shifted by the magnetic quadrupole moment and how those shifts can be measured. The measurement scheme requires molecules in a superposition of magnetic sub-levels that differ by many units of angular momentum. We develop a generic scheme for preparing these states. Finally, we consider the sensitivity that can be reached, showing that this method can reduce the current uncertainties on several charge-parity-violating parameters.
Funder
Science and Technology Facilities Council
Alfred P. Sloan Foundation
Gordon and Betty Moore Foundation
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献