A Wi-Fi dynamic routing algorithm based on energy prediction for wildlife monitoring wireless network

Author:

Song Yang,Ziyang Pan,Hui Tan,Shaoxiang Hu

Abstract

The routing protocol of wildlife monitoring Wi-Fi (Wireless Fidelity) networks cannot balance node energy consumption, leading to early node death. Therefore, the research on energy balance in wildlife monitoring Wi-Fi networks is a hot topic. In order to balance the energy consumption of Wi-Fi networks and extend the lifespan of wireless networks, we designed the low energy dynamic routing protocol LEACH-EP (Low Energy Adaptive Clustering Hierarchy- Energy Prediction) based on energy prediction by analyzing the long-range dependent characteristics of the remaining energy time series (RETS) of wireless network nodes. This protocol uses the LSTM (Long Short-Term Memory) model to predict the remaining energy of network nodes, and then dynamically plans routes using future remaining energy. We conducted a networking experiment in the Anzihe Nature Reserve in Chengdu, China, and the Energy Balance Factor index of the wireless network significantly improved. The Mean Absolute Error value of network nodes is less than 60 mW, which is less than 10% of the average daily energy consumption of nodes. Half of the surviving network nodes have achieved an increase to 55.2%, and the network death time has been extended by 38.6%. The experimental results show that the energy prediction routing protocol LEACH-EP can significantly extend the node survival life and balance network energy consumption.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference34 articles.

1. Using satellite tracking collars to monitor released captive-bred wild Bactrian camels;Xue;Acta Theriologica Sinica,2017

2. GATA: GPS-Arduino based tracking and alarm system for protection of wildlife animals;Gor,2017

3. Systematic literature review on energy efficient routing schemes in WSN–a survey;Shafiq;Mobile Networks Appl,2020

4. Energy efficient routing and reliable data transmission protocol in WSN;Osamah;Int J Adv Soft Compu,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3