Sympathetic feedback cooling in the optomechanical system consisting of two coupled cantilevers

Author:

Gong Zhi-Cheng,Shen Cheng-Yu,Yuan Quan,Sun Chang-Pu,Li Yong,Fu Hao

Abstract

We present sympathetic cooling in an optomechanical system consisting of two coupled cantilevers. The hybridization of the cantilevers creates a symmetric mode, which is feedback cooled, and an anti-symmetric mode not directly controllable by the feedback. The scheme of sympathetic cooling is adopted to cool the anti-symmetric mode indirectly by parametrically coupling to the feedback-cooled symmetric mode, from which the cooling power can be transferred. Experiment shows that the realization of coherent dynamics plays an essential role in sympathetic cooling, in which optimal cooling is achieved when the mechanical dissipation rate and the strength of coupling become comparable. The sympathetic cooling is improved by increasing the strength of mode coupling to enhance the transfer of cooling power. Also, the limit of sympathetic cooling imposed by the capacity of feedback cooling is reached as the effective temperatures of the two modes approach the strong coherent coupling condition. Our research provides the prospect of extending the cooling techniques to coupled mechanical resonators for a broad application in sensing and information processing.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Hainan University

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3