Correction of the post-irradiation T1 relaxation effect for chemical exchange-sensitive MRI: A phantom study

Author:

Chung Julius Juhyun,Jin Tao

Abstract

Purpose: In many pulse sequences of chemical exchange-sensitive MRI including multi-slice chemical exchange saturation transfer (CEST) or chemical exchange sensitive spin-lock (CESL), there is a finite time delay between the irradiation preparation and the imaging acquisition, during which the T1-relaxation reduces the chemical exchange contrast and affects the accuracy for volumetric imaging. We propose a simple post-acquisition method to correct this contamination.Methods: A simple formula was derived to evaluate the cross-slice T1-relaxation contamination in multi-slice echo-planar imaging (EPI) after the irradiation preparation. CEST and CESL experiments were performed on phantoms to examine the accuracy of this approach.Results: Theoretical derivation showed that the cross-slice T1-relaxation contamination in multi-slice EPI imaging can be corrected by the signals of each slice at a parameter that suppresses the signal, e.g., at the water frequency for CEST, or with very long spin-lock pulse for CESL. This formula was confirmed by the results of phantom experiments, for both long and short irradiation durations with and without a steady-state, respectively. To minimize the effect of B0 inhomogeneity in the CEST experiment, a more accurate measurement of the signal at water frequency can be achieved with a higher pulse power and shorter duration.Conclusion: We proposed and validated a simple approach to correct the cross-slice T1-relaxation effect, which can be applied to volumetric CEST and CESL studies acquired by multi-slice EPI, or other imaging modalities with similar T1-relaxation contamination.

Funder

National Institutes of Health

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3