A range ambiguity classification algorithm for automotive LiDAR based on FPGA platform acceleration

Author:

Li Haoyu,Xiang Sihua,Zhang Lu,Zhu Jianzhong,Wang Song,Wang You

Abstract

In the past decade, the automotive light detection and ranging (LiDAR) has been experiencing a rapid expansion stage. Many researchers have been involved in the research of LiDARs and have installed it in vehicles as a means of enhancing autopilot capabilities. Compared with a traditional millimeter wave radar, LiDARs have many advantages such as the high imaging resolution, long measurement range, and the ability to reconstruct 3D information around the vehicle. These features make LiDARs one of the crucial research hotspots in the field of autopilot. The basic principles of LiDARs are the same as those of a laser rangefinder. The distance information can be obtained by locating the echo instant corresponding to the laser emission moment. But if the interval between two adjacent laser pulses is extremely narrow, the regions of the light emission and echo will be overlapped. Therefore, a range ambiguity will occur and the distance information calculation process will become abnormal. Besides, the high resolution of LiDARs is also characterized by its extremely high emissions frequency. Whilst the information about the surrounding environment of an automotive car can be retrieved more accurately, it means that the possibility of range ambiguity is also increasing at the same time. In this paper, we propose an algorithm for solving the range ambiguity problem of the LiDARs based on the concept of classification and can be accelerated by the FPGA approach, for the first time in the field of an automotive LiDAR. The algorithm can be performed by employing a single wavelength pulsed laser and can be specifically optimized for the demands of field programmable gate arrays (FPGAs). While guaranteeing the high resolution of LiDARs, the attenuation of the measurement ability should exceed due to the occurrence of range ambiguity. It can also match the demand for the processing speed of large amounts of point cloud information data. Through controlling the cost of the whole device, the performance of the LiDAR can be greatly improved. The result of this paper might provide a bright future of automotive LiDARs with the high data processing efficiency and the high resolution at the same time.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference23 articles.

1. Automotive LiDAR technology: a survey;Roriz;IEEE Trans Intell Transportation Syst,2022

2. TOF lidar development in autonomous vehicle;Liu,2018

3. Effects of input resolution on LIDAR pedestrian localization using deep learning;Sohn,2021

4. Lidar for autonomous driving: the principles, challenges, and trends for automotive lidar and perception systems;Li;IEEE Signal Process. Mag,2020

5. Analysis of lidar-based autonomous vehicle detection technologies for recognizing objects;Srivastava,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3