Tavis-Cummings model revisited: A perspective from macroscopic quantum electrodynamics

Author:

Chuang Yi-Ting,Lee Ming-Wei,Hsu Liang-Yan

Abstract

The Tavis-Cummings (TC) model has been widely used to investigate the collective coupling effect in hybrid light-matter systems; however, the TC model neglects the effect of a dielectric environment (the spectral structure of photonic bath), and it remains unclear whether the TC model can adequately depict the light-matter interaction in a non-homogeneous, dispersive, and absorbing medium. To clarify the ambiguity, in this work, we first connect the macroscopic quantum electrodynamics and the TC model with dissipation. Based on the relationship between these two theoretical frameworks, we develop a guideline that allows us to examine the applicability of the TC model with dissipation. The guideline states that if 1) the generalized spectral densities are independent of the positions of molecules and 2) the generalized spectral densities resemble a Lorentzian function, then the hybrid light-matter system can be properly described by the TC model with dissipation. In order to demonstrate how to use the guideline, we examine the position dependence and the lineshape of the generalized spectral densities in three representative systems, including a silver Fabry-Pérot cavity, a silver surface, and an aluminum spherical cavity. We find that only the aluminum spherical cavity meets the two conditions, i.e., position independence and Lorentzian lineshape, required for the utilization of the dissipative TC model. Our results indicate that the use of the TC model with dissipation to study the collective coupling effect should be done with care, providing an important perspective on resonance energy transfer and polariton chemistry.

Funder

Academia Sinica

Ministry of Science and Technology, Taiwan

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3