Residual stress determination in a C-C composite consisting of a carbonized elastomer matrix filled with graphite, carbon black and short carbon fibers

Author:

Statnik Eugene S.,Ignatyev Semen D.,Salimon Alexey I.,Stepashkin Andrey A.,Korsunsky Alexander M.

Abstract

In this study, composites obtained through low-temperature carbonization of elastomeric matrix highly filled with graphite, carbon black and short carbon fibers were studied for the purpose of determining residual stresses at different scales using a combination of several complementary methods. The state-of-the-art techniques included X-ray stress analysis using the sin2ψ method, the micro-ring-core technique via Focused Ion Beam milling and Digital Image Correlation (FIB-DIC), the contour method, the strain gauge method, and the hole drilling technique with digital laser speckle pattern interferometry (DLSPI). It was found that the contour method could not be used implemented for residual stress evaluation due to the low electrical conductivity of composite. Moreover, the DLSPI hole drilling method did not reveal any fringes indicating significant residual stress level exceeding a few MPa. The strain gauge method also revealed a narrow residual stress distribution with an average value of approximately zero. In contrast, the X-ray sin2ψ method as well as FIB-DIC technique both returned values of about 150–250 MPa. A hierarchical model of the composite is proposed based on the Davidenkov Type I–II–III stress classification that provides an explanation of these observations.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3