Simulating the Euler equations on multiple GPUs using Python

Author:

Brodtkorb André R.,Sætra Martin L.

Abstract

GPUs have become a household name in High Performance Computing (HPC) systems over the last 15 years. However, programming GPUs is still largely a manual and arduous task, which requires expert knowledge of the physics, mathematics, and computer science involved. Even though there have been large advances in automatic parallelization and GPU execution of serial code, it is still difficult to fully utilize the GPU hardware with such approaches. Many core numeric GPU codes are therefore still mostly written using low level C/C++ or Fortran for the host code. Several studies have shown that using higher level languages, such as Python, can make software development faster and with fewer bugs. We have developed a simulator based on PyCUDA and mpi4py in Python for solving the Euler equations on Cartesian grids. Our framework utilizes the GPU, and can automatically run on clusters using MPI as well as on shared-memory systems. Our framework allows the programmer to implement low-level details in CUDA C/C++, which is important to achieve peak performance, whilst still benefiting from the productivity of Python. We show that our framework achieves good weak and strong scaling. Our weak scaling achieves more than 94% efficiency on a shared-memory GPU system and more than 90% efficiency on a distributed-memory GPU system, and our strong scaling is close to perfect on both shared-memory and distributed-memory GPU systems.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference29 articles.

1. Fast matrix multiplies using graphics hardware;Larsen,2001

2. A survey of general-purpose computation on graphics hardware;Owens;Computer Graphics Forum,2007

3. GPU computing;Owens;Proc IEEE,2008

4. State-of-the-art in heterogeneous computing;Brodtkorb;Scientific Programming,2010

5. Graphics processing unit (GPU) programming strategies and trends in GPU computing;Brodtkorb;J Parallel Distributed Comput,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3