MIPANet: optimizing RGB-D semantic segmentation through multi-modal interaction and pooling attention

Author:

Zhang Shuai,Xie Minghong

Abstract

The semantic segmentation of RGB-D images involves understanding objects appearances and spatial relationships within a scene, which necessitates careful consideration of multiple factors. In indoor scenes, the presence of diverse and disorderly objects, coupled with illumination variations and the influence of adjacent objects, can easily result in misclassifications of pixels, consequently affecting the outcome of semantic segmentation. We propose a Multi-modal Interaction and Pooling Attention Network (MIPANet) in response to these challenges. This network is designed to exploit the interactive synergy between RGB and depth modalities, aiming to enhance the utilization of complementary information and improve segmentation accuracy. Specifically, we incorporate a Multi-modal Interaction Module (MIM) into the deepest layers of the network. This module is engineered to facilitate the fusion of RGB and depth information, allowing for mutual enhancement and correction. Moreover, we introduce a Pooling Attention Module (PAM) at various stages of the encoder to enhance the features extracted by the network. The outputs of the PAMs at different stages are selectively integrated into the decoder through a refinement module to improve semantic segmentation performance. Experimental results demonstrate that MIPANet outperforms existing methods on two indoor scene datasets, NYU-Depth V2 and SUN-RGBD, by optimizing the insufficient information interaction between different modalities in RGB-D semantic segmentation. The source codes are available at https://github.com/2295104718/MIPANet.

Publisher

Frontiers Media SA

Reference68 articles.

1. Fully convolutional networks for semantic segmentation;Shelhamer;IEEE Trans Pattern Anal Machine Intelligence,2017

2. Enhancing part features via contrastive attention module for vehicle re-identification;Li,2022

3. Microsoft kinect sensor and its effect;Zhang;IEEE MultiMedia,2012

4. Std2p: rgbd semantic segmentation using spatio-temporal data-driven pooling;He,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3