Authenticated Multiparty Quantum Key Agreement for Optical-Ring Quantum Communication Networks

Author:

Gao Li-Zhen,Zhang Xin,Lin Song,Wang Ning,Guo Gong-De

Abstract

Quantum communication networks are connected by various devices to achieve communication or distributed computing for users in remote locations. In order to solve the problem of generating temporary session key for secure communication in optical-ring quantum networks, a quantum key agreement protocol is proposed. In the key agreement protocols, an attacker can impersonate a legal user to participate in the negotiation process and eavesdrop the agreement key easily. This is often overlooked in most quantum key agreement protocols, which makes them insecure in practical implementation. Considering this problem, the function of authenticating the user’s identity is added in the proposed protocol. Combining classical hash function with identity information, we design the authentication operation conforming to the characteristics of quantum search algorithm. In the security analysis of the proposed protocol, quantum state discrimination is utilized to show that the protocol is secure against common attacks and impersonation attack. In addition, only single photons need to be prepared and measured, which makes our protocol feasible with existing technology.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference34 articles.

1. Polynomial-time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer;Shor;SIAM J Comput,1997

2. Quantum Cryptography: Public Key Distribution and coin Tossing;Bennett,1984

3. Quantum Cryptography;Gisin;Rev Mod Phys,2002

4. Device-independent Quantum Key Distribution with Random Key Basis;Schwonnek;Nat Commun,2021

5. Theoretically Efficient High-Capacity Quantum-Key-Distribution Scheme;Long;Phys Rev A,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3