Cold-atom optical filtering enhanced by optical pumping

Author:

Guan Xiaolei,Zhuang Wei,Shi Tiantian,Miao Jianxiang,Zhang Jia,Chen Jingbiao,Luo Bin

Abstract

Atomic optical filters such as Faraday anomalous dispersion optical filters (FADOFs) or similar technologies can achieve very narrow optical bandwidth close to the scale of atomic linewidth, which can be greatly reduced in cold atoms. However, limited by the number of cold atoms and the size of the cold atomic cloud, the number of atoms interacting with the laser is reduced, and the transmission remains as low as 2%. In this work, we introduce the optical pumping into the cold atomic optical filter to solve this problem. Circular polarized optical pumping can produce polarization of the atomic ensemble and induce dichromatic as well as the Faraday rotation. We demonstrate a cold-atom optical filter which operates on the 87Rb 52S1/2 (F=2) to 52P3/2 (F′=2) transition at 780 nm. The filter achieves an ultranarrow bandwidth of 6.6(4) MHz, and its peak transmission is 15.6%, which is nearly 14 times higher than that of the cold-atom optical filter realized by Faraday magneto-optic effect. This scheme can be extended to almost all kinds of atomic optical filters and may find applications in self-stabilizing laser and active optical clock.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3