LIBS at high duty-cycles: effect of repetition rate and temporal width on the excitation laser pulses

Author:

Riedel Jens,Hufgard Josefin,You Yi

Abstract

Laser-induced breakdown spectroscopy (LIBS) is becoming a more mature technology every year with new variants such as laser ablation molecular isotopic spectrometry, reheating by various discharge techniques, and multiple pulse excitation schemes, in which sometimes lasers of different pulse lengths are used. However, lasers with inherent parameters like pulse length and repetition rate are still almost exclusively employed. Recent years have witnessed the advent of novel high-repetition-rate laser concepts for machining processes, like welding, milling, and engraving. Here, a comprehensive study of single-pulse LIBS spectra of a single aluminum target is presented to showcase the applicability of flexible high duty-cycle master oscillator power amplifier (MOPA) lasers. Although traditional flashlamp-pumped Fabry–Pérot lasers only permit a variation in the pulse energy and are operated at very low duty-cycles, MOPA lasers add repetition rate and pulse length as variable parameters. A thorough analysis of the temporal plasma behavior revealed the emission dynamic to closely match the excitation laser pulse pattern. An aluminum sample’s spectral response was shown to be significantly impacted by variations in both rate and length. Although the spectral emission strength of the elemental lines of Al, Sr, and Ca all peaked at slightly different parameter settings, the strongest impact was found on the relative abundance of molecular AlO bands. Unlike in previous laser ablation molecular isotopic spectrometry (LAMIS) publications, the latter could be readily detected with a good intensity and well-resolved spectral features without any temporal gating of the detector. This finding, together with the fact that MOPA lasers are both inexpensive and dependable, makes for a promising combination for future studies including the detection of diatomic band structures.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3