Manipulation of Multielectron Dynamics of Molecules by Fourier-Synthesized Intense Laser Pulses: Effective Potential Analysis of CO

Author:

Ohmura Shu,Ohmura Hideki,Kato Tsuyoshi,Kono Hirohiko

Abstract

We present a theoretical investigation as to how multielectron dynamics of CO are manipulated by Fourier-synthesized intense laser pulses. The pulses used are assumed to be comprised of harmonics up to the fourth order. The multiconfiguration time-dependent (TD) Hartree-Fock (MCTDHF) method, where the multielectron wavefunction Ψ(t) is expressed as a linear combination of various electron configurations, is employed to simulate the dynamics of CO interacting with Fourier-synthesized pulses. The multielectron nature such as electron correlation is quantified by using our effective potential approach. To begin with, the time-dependent natural orbitals {ϕj(r,t)} which diagonalize the first order reduced density matrix are obtained from Ψ(t), where r is the one-electron coordinate. The effective potentials υjeff(r,t) that determine the dynamics of ϕj(r,t) are then derived from the equations of motion for {ϕj(r,t)}. υjeff(r,t) consists of the one-body part υ1(t) including the interaction with the laser electric field ε(t) and the two-body part υ2,j(t) originating from electron-electron interaction. In this way, the role of electron correlation can be quantified by comparing υjeff(r,t) with those obtained by the TDHF method, where Ψ(t) is approximated by a single Slater determinant. We found a very similar profile in υ5σeff(r,t) of the 5σ highest occupied molecular orbital for both near-infrared one-color (ω) and directionally asymmetric ω+2ω two-color pulses; when ε(t) points from the nucleus C to O, a hump appears in υ5σeff(r,t) only 2 bohrs outward from C. The hump formation, which originates from the field-induced change in υ2,5σ(t) (especially, due to electron correlation), is responsible for preferential electron ejection from the C atom side (experimentally observed anisotropic ionization). A coherent superposition of ω and 2ω fields with an appropriate relative phase thus works as a one-color pulse of which either positive or negative peaks are filtered out. More sophisticated manipulation is possible by adding higher harmonics to a synthesized field. We show that the 5σ orbital can be squeezed toward the inside of the potential valley in υ5σeff(r,t), which encloses the molecule at a radius of ∼7 bohrs (semicircle in the region of z <0), by adjusting the phases of a ω+2ω+3ω+4ω field. The hump and valley formation in υ5σeff(r,t) are closely correlated with domains of increasing and decreasing electron density, respectively.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3