Measure and evaluate the hydrothermal flow of a Newtonian fluid in homogeneous permeable media equipped with a fin: A numerical approach

Author:

Bilal Sardar,Khan Noor Zeb,Riaz Arshad,Alyami Maryam Ahmed,El-Din ElSayed M. Tag

Abstract

This study envisions the hydrothermal characteristics of a viscous fluid in a homogenously permeable hexagonal enclosure. Permeability aspects in the flow domain are described by employing the Brinkman-extended Darcy law. A corrugated hexagonal enclosure along with the placement of a star-shaped fin is taken into account. Heated rectangular blocks at horizontal extremities are installed, and sliding sides of the enclosure are considered to be cold to provide convective potential to the flow. In addition, adjoining portions of the heated rectangular blocks are supposed to be adiabatic. The dimensionless governing equations of the resultant problem are derived initially and then solved numerically by implementing the Galerkin finite element approach, and COMSOL is obliged. For this purpose, first, domain discretization is demonstrated in view of 2D elements by performing hybridized meshing. Then, the system of non-linear equations is resolved by a non-linear solver (PARADISO). The grid convergence test is performed to confirm the credibility of the carried out simulations by calculating the average Nusselt number at different refinement levels. A change in associated distributions against the involved physical parameters (Darcy number (Da), Rayleigh number (Ra), and Prandtl number (Pr)) for a wide range is revealed through graphs and tables. Quantities like kinetic energy and heat flux (local and average) are also evaluated through concerned parameters. The results clearly demonstrate that the Darcy number tends to reduce the heat transfer rate. In particular, it is depicted that by increasing the Rayleigh number (Ra), strengthening in the temperature potential arises in the system, thereby magnifying the heat transfer rate. Moreover, it is disclosed that by reducing the Darcy number, kinetic energy shows a decreasing trend.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3