Dynamic modal characteristics of transverse mode instabilities in ytterbium-doped fiber laser oscillator

Author:

Chai Junyu,Liu Wenguang,Wen Yujun,Wang Xiaolin,Xie Kun,Zhou Qiong,Zhang Hanwei,Zhang Jiangbin,Liu Pengfei,Zhang Dan,Lu Yao,Jiang Zongfu,Zhao Guomin

Abstract

In recent years, transverse mode instability (TMI) has been widely observed in fiber laser amplifier systems. The transverse mode instability phenomenon in fiber laser oscillators is less studied. Here, we focus on the dynamical output properties, i.e., its temporal signal and modal characteristics in a 30-μm-core-diameter ytterbium (Yb)-doped fiber laser oscillator. The TMI occurs at a pumping power around 310 W. Different from amplifiers, the basic oscillation frequency is quite low, at around 100 Hz, changing with time and pump power. When the fiber laser oscillator operates beyond TMI threshold at 357 W or 377 W for a while, the temporal fluctuation slowly disappears together with a decreased oscillation frequency, and appears again later. Based on the mode decomposition technique, we find that during the period of fluctuation disappearance at 357 W, the power output stays low and the output beam is still a mixture of fundamental mode and higher-order modes. The fundamental mode content is calculated to be averagely higher when temporal fluctuation disappears, increasing from ∼57% to ∼63%. Our results indicate complex interaction between the fiber laser oscillation and the TMI effect, and calls for more attention into understanding TMI in fiber laser oscillators.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3