A first-principles study on the effect of Cr, Mn, and Co substitution on Fe-based normal- and inverse-Heusler compounds: Fe3−xYxZ (x=0, 1, 2, 3; Y= Cr, Mn, Co; Z=Al, Ga, Si)

Author:

Huang Hung-Lung,Tung Jen-Chuan,Jeng Horng-Tay

Abstract

First-principles calculation has become one of the most reliable approaches in predicting structural, electronic, and magnetic properties for material applications. Alloys in Heusler structures have also attracted much attention recently since they can be easily synthesized and provide interesting properties for future spintronic applications. In this work, we investigate a series of Fe-based Heusler compounds Fe3−xYxZ (x = 0, 1, 2, 3; Y= Cr, Mn, Co; Z= Al, Ga, Si) with L21- and XA-type structures using first-principles calculations based on density functional theory. According to formation energy calculations and mechanical property analysis, most of the studied Heusler compounds are thermodynamically stable and could be synthesized experimentally. The Co substitution leads Fe3−xCoxZ to a ferromagnetic ground state like Fe3Z with a strong magnetization ranging from 4 to 6 μB/f. u. While replacing Fe with Cr or Mn, the exchange coupling between Cr (Mn) and its neighboring atoms generally tend to be anti-parallel. Among the antiferromagnetic compounds, Mn3Al and Mn3Ga are antiferromagnetic half metal while Mn3Si is ferrimagnetic half metal. These rarely found type of half metals with low magnetic moment and high spin polarization at the Fermi level are important for low energy consumption spintronic applications. The estimated Curie temperatures for Mn3Al, and Mn3Si and Co2FeSi (XA) are in good agreement with previously theoretical values, while for Fe3Al and Fe3Si, they are in good agreement with previous experimental results. The good consistency in Curie temperature demonstrates high reliability of our predictions based on first-principles calculations. As for the topological property aspect, we predict Fe2CrAl and Fe2MnAl as the 3-dimensional Weyl semimetal. Furthermore, Fe2CrSi is predicted to be the magnetic nodal-line semimetal. Interestingly, our mechanical property analysis demonstrates that Co3Si and Fe2CoSi (L21) exhibit ultraelastic metal behavior, which is of high potential in advanced mechanical industry. This work suggests that Heusler compounds are excellent candidates for future spintronics as well as for high-performance ultraelastic metals.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3