Enhancement of positron yields using multi-layer targets irradiated by laser-induced energetic electrons

Author:

Peng Meng,Ma Yan-Yun,Li Bo-Yuan,Tian Li-Chao,Jiang Jing,Zi Ming,Yang Xiao-Hu

Abstract

Positrons with high energy and short pulse duration generated by the ultra-short and ultra-intense laser interaction with a two-target system (under-density plasma target and high-Z metal target) have wide applications. In this paper, we proposed an optimal scheme for enhancing positrons with multi-layer high-Z converters. Positrons with larger divergence escape from the target zone, reducing positron annihilation in the target, while secondary particles with smaller divergence react with the subsequent target to produce more positrons. The total positron yield and positron beam divergence increased obviously with the target number when using the thin converter, while the scenario was reversed for the recorded positrons. The total positrons produced by bilayer 5-mm targets and eight-layer 1-mm targets increased by 14% and 62%, respectively, compared to the outgoing positrons produced by an 8-mm monolayer target. Positron yields can be further enhanced by adjusting the thickness of the subsequent target and distance, according to the intensity and angular distribution of positrons emitted from the previous target.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3