So Similar, yet so Different: The Case of the Ionic Liquids N-Trimethyl-N (2-methoxyethyl)ammonium Bis (trifluoromethanesulfonyl)imide and N,N-Diethyl-N-methyl-N(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide

Author:

Palumbo Oriele,Sarra Angelo,Brubach Jean-Blaise,Trequattrini Francesco,Cimini Adriano,Brutti Sergio,Appetecchi Giovanni Battista,Simonetti Elisabetta,Maresca Giovanna,Fantini Sébastien,Lin Rongying,Falgayrat Anaïs,Roy Pascale,Paolone Annalisa

Abstract

Two ethoxy containing ionic liquids (ILs) sharing the same anion, N-trimethyl-N (2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide (N111(2O1)-TFSI) and N,N-diethyl-N-methyl-N (2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide (N122(2O1)-TFSI), and their mixtures are studied by means of differential scanning calorimetry and infrared spectroscopy combined with DFT calculations. The two ILs, slightly differing only for the length of two short chains, diverge significantly in the thermal properties: N111(2O1)-TFSI undergoes to a crystallization upon cooling, whereas N122(2O1)-TFSI is likely to become a glass. Experimental results indicate that in N111(2O1)-TFSI the occurrence of hydrogen bonding is energetically favored, and become particularly evident in the solid phase. The comparison with computational results indicates that it could be ascribed to the CH bonds involving the C atoms directly linked to the central N atom. In N122(2O1)-TFSI, DFT calculations suggest that hydrogen bonding could take place; however, IR measurements suggest that hydrogen bonding is not energetically favored. Moreover, in N122(2O1)-TFSI there is a larger conformational disorder that prevents from the alignment of cation and anion that contributes to the detection of clear hydrogen bonding infrared active bands. The mixtures rich in N111(2O1)-TFSI crystallize at lower temperatures than the pure ionic liquid. Progressively, the energy gain due to the instauration of hydrogen bonding decreases as the concentration of N122(2O1)-TFSI increases.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3