Electronic Nematic States Tuned by Isoelectronic Substitution in Bulk FeSe1−xSx

Author:

Coldea Amalia I.

Abstract

Isoelectronic substitution is an ideal tuning parameter to alter electronic states and correlations in iron-based superconductors. As this substitution takes place outside the conducting Fe planes, the electronic behaviour is less affected by the impurity scattering experimentally and relevant key electronic parameters can be accessed. In this short review, I present the experimental progress made in understanding the electronic behaviour of the nematic electronic superconductors, FeSe1−xSx. A direct signature of the nematic electronic state is in-plane anisotropic distortion of the Fermi surface triggered by orbital ordering effects and electronic interactions that result in multi-band shifts detected by ARPES. Upon sulphur substitution, the electronic correlations and the Fermi velocities decrease in the tetragonal phase. Quantum oscillations are observed for the whole series in ultra-high magnetic fields and show a complex spectra due to the presence of many small orbits. Effective masses associated to the largest orbit display non-divergent behaviour at the nematic end point (x ∼ 0.175(5)), as opposed to critical spin-fluctuations in other iron pnictides. Magnetotransport behaviour has a strong deviation from the Fermi liquid behaviour and linear T resistivity is detected at low temperatures inside the nematic phase, where scattering from low energy spin-fluctuations are likely to be present. The superconductivity is not enhanced in FeSe1−xSx and there are no divergent electronic correlations at the nematic end point. These manifestations indicate a strong coupling with the lattice in FeSe1−xSx and a pairing mechanism likely promoted by spin fluctuations.

Funder

Engineering and Physical Sciences Research Council

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference164 articles.

1. Nematic Fermi fluids in condensed matter physics;Fradkin;Ann Rev Condens Matter Phys,2010

2. On the stability of a Fermi liquid;Pomeranchuk;J Exp Theor Phys Lett,1959

3. Lattice symmetry breaking in cuprate superconductors: stripes, nematic, and superconductivity;Vojta;Adv Phys,2009

4. Superconductivity and non-Fermi liquid behavior near a nematic quantum critical point;Lederer;Proc Natl Acad Sci USA,2017

5. Enhancement of superconductivity near a nematic quantum critical point;Lederer;Phys Rev Lett,2015

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3