Author:
Simović Ana,Savović Svetislav,Wang Zhuo,Drljača Branko,Kovačević Milan S.,Kuzmanović Ljubica,Djordjevich Alexandar,Aidinis Konstantinos,Chen Chen
Abstract
Up to now, there have been no commercial simulation tools accessible for researching the transmission properties of multimode microstructured optical fibers (MOFs). In order to avoid this problem, this study uses the time-independent power flow equation (TI PFE) numerical solution to examine the wavelength dependency of the equilibrium mode distribution (EMD) and steady state distribution (SSD) in multimode graded-index microstructured polymer optical fibers (GI mPOF) with a solid core. We showed that the lengths zs at which an SSD is obtained in GI mPOF and the coupling length Lc necessary to create an EMD are shorter at λ = 568 nm than they are found to be at λ = 633 nm. The lengths Lc and zs stay constant when the wavelength decreases further from λ = 568 to 522 and then to 476 nm. As a result, it is anticipated that a faster bandwidth enhancement in the tested GI mPOF will take place at wavelengths around λ = 568 nm as opposed to λ = 633 nm. Such a bandwidth improvement is not brought about by additional wavelength reduction. The study’s findings can be used in communication and sensory systems that use multimode GI mPOFs at different wavelengths.
Funder
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献