Mueller Matrix Imaging Optimized by Uniform Illumination

Author:

Guo Wei,Song Jiawei,Zeng Nan,Ma Hui

Abstract

In this study, we present a flat-field Mueller matrix imaging system to reduce the reconstruction error caused by critical illumination. This study demonstrates that the signal-to-noise ratio (SNR) of the reconstructed images is improved by about eight times by adding a beam shaping module made up of microlens arrays to a traditional Mueller system. The scalar diffraction theory and polarization numerical simulation show the ability of the new device in minimizing the adverse effects of light source noise on polarization reconstruction results. Finally, the experiment results on standard resolution board, porous anodic alumina, and real pathological slices further confirm the superiority of the flat-field Mueller system in precisely identifying sample structure and quantitative differences between various polarization parameters (depolarization ratio Δ, linear retardance δ, and birefringence orientation θ), demonstrating the potential of flat-field polarization imaging in pathological diagnosis and tissue characteristic extraction.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of polarization-based technology for biomedical applications;Journal of Innovative Optical Health Sciences;2024-03-22

2. Effect of light source uniformity for imaging ellipsometry measurements;Optics Communications;2023-10

3. Mueller matrix polarimetry for in vivo scar tissue diagnostics;Polarized Light and Optical Angular Momentum for Biomedical Diagnostics 2023;2023-03-15

4. A Stokes imaging microscope system with a large field of view;Polarized Light and Optical Angular Momentum for Biomedical Diagnostics 2023;2023-03-15

5. Mueller Matrix Microscopy for In Vivo Scar Tissue Diagnostics and Treatment Evaluation;Sensors;2022-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3