The Accuracy of Cerenkov Photons Simulation in Geant4/Gate Depends on the Parameterization of Primary Electron Propagation

Author:

Trigila Carlotta,Ariño‐Estrada Gerard,Kwon Sun Il,Roncali Emilie

Abstract

Energetic electrons traveling in a dispersive medium can produce Cerenkov radiation. Cerenkov photons’ prompt emission, combined with their predominantly forward emission direction with respect to the parent electron, makes them extremely promising to improve radiation detector timing resolution. Triggering gamma detections based on Cerenkov photons to achieve superior timing resolution is challenging due to the low number of photons produced per interaction. Monte Carlo simulations are fundamental to understanding their behavior and optimizing their pathway to detection. Therefore, accurately modeling the electron propagation and Cerenkov photons emission is crucial for reliable simulation results. In this work, we investigated the physics characteristics of the primary electrons (velocity, energy) and those of all emitted Cerenkov photons (spatial and timing distributions) generated by 511 keV photoelectric interactions in a bismuth germanate crystal using simulations with Geant4/GATE. Geant4 uses a stepwise particle tracking approach, and users can limit the electron velocity change per step. Without limiting it (default Geant4 settings), an electron mean step length of ∼250 μm was obtained, providing only macroscopic modeling of electron transport, with all Cerenkov photons emitted in the forward direction with respect to the incident gamma direction. Limiting the electron velocity change per step reduced the electron mean step length (∼0.200 μm), leading to a microscopic approach to its transport which more accurately modeled the electron physical properties in BGO at 511 keV. The electron and Cerenkov photons rapidly lost directionality, affecting Cerenkov photons’ transport and, ultimately, their detection.Results suggested that a deep understanding of low energy physics is crucial to perform accurate optical Monte Carlo simulations and ultimately use them in TOF PET detectors.

Funder

National Institutes of Health

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting time-of-flight with Cerenkov light in BGO: a three-stage network approach with multiple timing kernels prior;Physics in Medicine & Biology;2024-08-23

2. Emphasizing Cherenkov Photons From Bismuth Germanate by Single Photon Response Deconvolution;IEEE Transactions on Radiation and Plasma Medical Sciences;2024-07

3. Search for a new material for a medical Cherenkov radiation detector;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2024-03

4. Pushing the limit of BGO-based dual-ended Cherenkov PET detectors through photon transit time correction;Physics in Medicine & Biology;2024-01-05

5. Cherenkov Light Emission in Pure Cherenkov Emitters for Prompt Gamma Imaging;IEEE Transactions on Radiation and Plasma Medical Sciences;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3