Personalized and privacy-preserving federated graph neural network

Author:

Liu Yanjun,Li Hongwei,Hao Meng

Abstract

High-performance GNN obtains dependencies within a graph by capturing the mechanism of message passing and aggregation between neighboring nodes in the graph, and successfully updates node embeddings. However, in practical applications, the inherent model structure of the graph is highly susceptible to privacy attacks, and the heterogeneity of external data can lead to a decrease in model performance. Motivated by this challenge, this work proposes a novel framework called Personalized Federated Graph Neural Network for Privacy-Preserving (PFGNN). Specifically, firstly, this work introduces a graph similarity strategy. Based on the principle that clients with similar features exhibit stronger homophily, this work divides all participating clients into multiple clusters for collaborative training. Furthermore, within each group, this work employs an attention mechanism to design a federated aggregation weighting scheme. This scheme is used to construct a global model on the server, which helps mitigate the difficulty of model generalization resulting from data heterogeneity collected from different clients. Lastly, to ensure the privacy of model parameters during the training process and prevent malicious adversaries from stealing them, this work implements privacy-enhancing technology by introducing an optimized function-hiding multi-input function encryption scheme. This ensures the security of both model data and user privacy. Experiments on real datasets show that our scheme outperforms FedAvg in accuracy, and the communication overhead is linearly related to the number of clients. Through this framework, PFGNN can handle all kinds of non-Euclidean structured data, multiple clients collaborate to train high-quality and highly secure global models. This work provides the foundation for designing efficient and privacy-preserving personalized federated graph neural networks.

Publisher

Frontiers Media SA

Reference25 articles.

1. Reinforcement learning architecture for cyber–physical–social ai: state-of-the-art and perspectives;Li;Artif Intelligence Rev,2023

2. Steps toward industry 5.0: building “6s” parallel industries with cyber-physical-social intelligence;Wang;IEEE/CAA J Automatica Sinica,2023

3. Geometric deep learning: going beyond euclidean data;Bronstein;IEEE Signal Process. Mag,2017

4. Federated graph machine learning: a survey of concepts, techniques, and applications;Fu;ACM SIGKDD Explorations Newsl,2022

5. Fast secure aggregation for privacy-preserving federated learning;Liu,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3