Microdosimetry for hadron therapy: A state of the art of detection technology

Author:

Parisi Gabriele,Romano Francesco,Schettino Giuseppe

Abstract

The interest in hadron therapy is growing fast thanks to the latest technological advances in accelerators and delivery technologies, to the development of more and more efficient and comprehensive treatment planning tools, and due to its increasing clinical adoption proving its efficacy. A precise and reliable beam quality assessment and an accurate and effective inclusion of the biological effectiveness of different radiation qualities are fundamental to exploit at best its advantages with respect to conventional radiotherapy. Currently, in clinical practice, the quality assurance (QA) is carried out by means of conventional dosimetry, while the biological effectiveness of the radiation is taken into account considering the Relative Biological Effectiveness (RBE). The RBE is considered a constant value for protons and it is estimated as a function of the absorbed dose in case of carbon ions. In this framework, microdosimetry could bring a significant improvement to both QA and RBE estimation. By measuring the energy deposited by the radiation into cellular or sub-cellular volumes, microdosimetry could provide a unique characterisation of the beam quality on one hand, and a direct link to radiobiology on the other. Different detectors have been developed for microdosimetry, from the more conventional tissue equivalent proportional counter (TEPC), silicon-based and diamond-based solid-state detectors, to ΔE-E telescope detectors, gas electrons multiplier (GEM), hybrid microdosimeters and a micro-bolometer based on Superconducting QUantum Interference Device (SQUID) technology. However, because of their different advantages and drawbacks, a standard device and an accredited experimental methodology have not been unequivocally identified yet. The establishment of accepted microdosimetry standard protocols and code of practice is needed before the technique could be employed in clinical practice. Hoping to help creating a solid ground on which future research, development and collaborations could be planned and inspired, a comprehensive state of the art of the detector technologies developed for microdosimetry is presented in this review, discussing their use in clinical hadron therapy conditions and considering their advantages and drawbacks.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference152 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3