Accurate segmentation of infrared images for circuit board diagnosis using an improved Deeplabv3+ network

Author:

Hao Jianxin,Xia Xuan,Wang Li,Li Zhixin,Zhu Meng

Abstract

An effective infrared image segmentation algorithm is essential for non-contact fault diagnosis of circuit boards. However, the uneven grayscale of the infrared images, multiple target regions, and large radiation noise pose challenges to achieving accurate segmentation and efficient data extraction for the interested regions. In this paper, we propose a segmentation algorithm based on the Deeplabv3+ network, using the lightweight MobileNetV2 as a replacement for the original Xception backbone network to improve computational efficiency and reduce overfitting. We also employ a composite loss function and cosine annealing learning rate to balance foreground-background segmentation and avoid local optima. Furthermore, we integrate the Convolutional Block Attention Module (CBAM) to extract and combine important spatial and channel features, allowing the algorithm to focus on identifying elements of the circuit board instead of background pixels, thereby improving segmentation accuracy. Experimental results demonstrate that our proposed algorithm achieves state-of-the-art performance in terms of both segmentation accuracy and computational efficiency on our self-built infrared circuit board dataset, with a MIoU of 90.34%, MPA of 95.26%, and processing speed of 25.19 fps. Overall, our proposed segmentation algorithm can effectively identify the key regions of interest in infrared images of circuit boards, providing technical support for non-contact diagnosis.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3