Optical Parameters of Atomically Heterogeneous Systems Created by Plasma Based Low Energy Ion Beams: Wavelength Dependence and Effective Medium Model

Author:

Singh Krishn Pal,Bhattacharjee Sudeep

Abstract

The article presents the irradiation effects of low energy (∼0.5 keV) inert gaseous Argon ion beams on optical constants [real (n) and imaginary (k) parts of the refractive index], dielectric constants, skin depth, and optical conductivity of copper (Cu), silver (Ag), and aluminum (Al) metallic thin films (MTF). The optical constants of pristine MTF are obtained by employing the universal Kramers-Kronig (KK) technique. The reflectivity of pristine MTF measured using UV-VIS-NIR spectrophotometry is used as an input parameter in the KK technique to determine the optical constants as a function of energy [or wavelength (λ)] of incident light ranging between ∼1–4.96 eV (or 250–1,200 nm). For the irradiated MTF, the optical constants including the skin depth (δ = λ/2πk), optical conductivity (σ = nkc/λ), and dielectric constants (ϵ1 = n2k2 and ϵ2 = 2nk) with varying ion fluence have been investigated by implementing the Maxwell-Garnett (MG) approximation, used to determine the effective dielectric constants of a random mixture of two different mediums. Additionally, n and k obtained from MG approximation have been compared with those obtained using the pseudo- Brewster angle technique for four different laser wavelengths (405, 532, 632.8 and 670 nm) and are found to be in good agreement with each other. It is observed that the optical constants and optical conductivity of the MTF decrease with increase in ion beam fluence, while the skin depth increases. Besides the optical constants, the behavior of skin depth, dielectric constants, and optical conductivity of the irradiated MTF with varying fluence are discussed in this article.

Funder

Indian Space Research Organisation

Science and Engineering Research Board

Council of Scientific and Industrial Research, India

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3