Hyperspectral low altitude UAV target tracking algorithm based on deep learning and improved KCF

Author:

Sun Haodong,Ma Pengge,Li Zhenghao,Ye Zhaoyi,Ma Yueran

Abstract

This article presents a novel target tracking algorithm for hyperspectral low altitude UAV, combining deep learning with an improved Kernelized Correlation Filter (KCF). Initially, an image noise reduction method based on principal component analysis with Block-Matching 3D (BM3D), is employed to process redundant information. Subsequently, an image fusion method is utilized to merge the processed hyperspectral image and the high-resolution panchromatic band image to obtain a high spatial resolution image for target enhancement. Following this, YOLOv5 is used to detect the coordinate information of the UAV target in the current frame. Then, The KCF algorithm is used for target tracking in the current frame using kernel correlation filtering. Finally, the Discriminative Scale Spatial Tracker (DSST) is employed to determine the scale information to achieve a multi-scale tracking effect. The experimental results demonstrate that the algorithm presented in this paper surpasses CSK, HLT, and the conventional KCF algorithm in hyperspectral UAV datasets. On average, there is a significant increase in accuracy which is over 17% when using our algorithm.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3