Introducing a new approach for modeling stock market prices using the combination of jump-drift processes

Author:

Movahed Ali Asghar,Noshad Houshyar

Abstract

The stock price data are sampled at discrete times (e.g., hourly, daily, weekly, etc). When data are sampled at discrete times, they appear as a sequence of discontinuous jump events, even if they have been sampled from a continuous process. On the other hand, distinguishing between discontinuities due to finite sampling of the continuous stochastic process and real jump discontinuities in the sample path is often a challenging task. Such considerations, led us to the question: Can discrete data (e.g., stock price) be modeled using only jump-drift processes, regardless of whether the sampled time series originally belongs to the class of continuous processes or discontinuous processes? To answer this question, we built a stochastic dynamical equation in the general form dyt=μ¯dt+i=1NξidJit, which includes a deterministic drift term (μ¯dt) and a combination of stochastic terms with jumpy behaviors (ξidJit), and used it to model the log-price time series yt. In this article, we first introduce this equation in its simplest form, including a drift term and a stochastic term, and show that such a jump-drift equation is capable of reconstructing stock prices in Black-Scholes diffusion markets. Afterwards, we extend the equation by considering two jump processes, and show that such a drift-jump-jump equation enables us to reconstruct stock prices in jump-diffusion markets more accurately than the old jump-diffusion model. To demonstrate the practical applications of the proposed method, we analyze real-world data, including the daily stock price of two different shares and gold price data with two different time horizons (hourly and weekly). Our analysis supports the practical applicability of the methodology. It should be noted that the presented approach is expandable and can be used even in non-financial research fields.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3