Action-angle variables for the Lie–Poisson Hamiltonian systems associated with the Hirota–Satsuma modified Boussinesq equation

Author:

Geng Xue,Du Dianlou,Geng Xianguo

Abstract

In this work, we present two finite-dimensional Lie–Poisson Hamiltonian systems associated with the Hirota–Satsuma modified Boussinesq equation by using the nonlinearization method. Moreover, the separation of variables on the common level set of Casimir functions is introduced to study these systems which are associated with a non-hyperelliptic algebraic curve. Finally, in light of the Hamilton–Jacobi theory, the action-angle variables for these systems are constructed, and the Jacobi inversion problem associated with the Hirota–Satsuma modified Boussinesq equation is obtained.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference29 articles.

1. Nonlinear evolution equations generated from the backlund transformation for the Boussinesq equation;Hirota;Prog Theor Phys,1977

2. Linearization of the Boussinesq equation and the modified Boussinesq equation;Quispel;Phys Lett A,1982

3. New similarity solutions for the modified Boussinesq equation;Clarkson;J Phys A: Math Gen,1989

4. Lax pair and Darboux transformation solutions of the modified Boussinesq equation;Geng;Acta Mathematicae Applicatae Sinica,1988

5. Finite-dimensional integrable systems through the decomposition of a modified Boussinesq equation;Dai;Phys Lett A,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3