In silico studies of OLED device architectures regarding their efficiency

Author:

Özdemir Ali Deniz,Li Fabian,Symalla Franz,Wenzel Wolfgang

Abstract

Simulations have become increasingly important to understand and design organic optoelectronic devices, such as organic light emitting diodes (OLEDs) and to optimize their performance by selecting appropriate materials and layer arrangements. To achieve accurate device simulations, it is crucial to consider the interplay between material properties, device architecture, and operating conditions and to incorporate physical processes such as charge injection, transport, recombination, and exciton decay. Simulations can provide insights into device bottlenecks and streamline optimization cycles, eliminating the need for physical prototyping and rationalizing OLED design. In this study, we investigated three heuristic OLED architectures with a 3D kinetic Monte Carlo (kMC) model and compared their quantum efficiency at different operation voltages. Our investigation focused on examining the effects of various layer arrangements on charge and exciton dynamics in OLED devices and establishing design principles for achieving high efficiency, which are consistent with experimental observations. Notably, we find that increasing the thickness of the emissive layer (EML) led to higher luminance efficiency, and that an emitter concentration of approximately 5% results in optimal performance. By using this model, it is possible to rapidly study the influence of many device parameters and explore a broad range of parameter and architecture space within a reasonable time-frame.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3