The Effect of Solar-Wind Turbulence on Magnetospheric Activity

Author:

D’Amicis R.,Telloni D.,Bruno R.

Abstract

The solar wind is a highly turbulent medium exhibiting scalings of the fluctuations ranging over several decades of scales from the correlation length down to proton and electron gyroradii, thus suggesting a self-similar nature for these fluctuations. During its journey, the solar wind encounters the region of space surrounding Earth dominated by the geomagnetic field which is called magnetosphere. The latter is exposed to the continuous buffeting of the solar wind which determines its characteristic comet-like shape. The solar wind and the magnetosphere interact continously, thus constituting a coupled system, since perturbations in the interplanetary medium cause geomagnetic disturbances. However, strong variations in the geomagnetic field occur even in absence of large solar perturbations. In this case, a major role is attributed to solar wind turbulence as a driver of geomagnetic activity especially at high latitudes. In this review, we report about the state-of-art related to this topic. Since the solar wind and the magnetosphere are both high Reynolds number plasmas, both follow a scale-invariant dynamics and are in a state far from equilibrium. Moreover, the geomagnetic response, although closely related to the changes of the interplanetary magnetic field condition, is also strongly affected by the intrinsic dynamics of the magnetosphere generated by geomagnetic field variations caused by the internal conditions.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference115 articles.

1. Transition region magnetic field and polar magnetic disturbances;Fairfield;J Geophys Res,1966

2. Interplanetary magnetic field and the auroral zones;Dungey;Phys Rev Lett,1961

3. Semiannual variation of geomagnetic activity;Russell;J Geophys Res,1973

4. Substorms in the magnetosphere;Baker,1984

5. The neutral line model of substorms: past results and present view;Baker;J Geophys Res,1966

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3