Author:
Qu Gaizhu,Wang Mengmeng,Shen Shoufeng
Abstract
We extend the invariant subspace method (ISM) to a class of Hamilton–Jacobi equations (HJEs) and a family of third-order time-fractional dispersive PDEs with the Caputo fractional derivative in this letter. More precisely, the complete classification is presented for such HJEs that admit invariant subspaces governed by solutions of the second-order and third-order linear ordinary differential equations (ODEs). Meanwhile, some concrete equations are derived for the construction of new exact solutions u(x,t)=∑i=1nCi(t)fi(x). Then a set of invariant subspaces of the considered third-order time-fractional non-linear dispersive equations are obtained. Based on the Laplace transform method (LTM) and applying several properties of the well known Mitta-Leffer (ML) function, the different types of explicit solutions of a family of third-order time-fractional dispersive PDEs are finally derived.
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献