Planarity in cubic intuitionistic graphs and their application to control air traffic on a runway

Author:

Fang Gang,Ahmad Uzma,Rasheed Ayman,Khan Aysha,Shafi Jana

Abstract

Fuzzy modeling plays a pivotal role in various fields, including science, engineering, and medicine. In comparison to conventional models, fuzzy models offer enhanced accuracy, adaptability, and resemblance to real-world systems and help researchers to always make the best choice in complex problems. A type of fuzzy graph that is widely used in medical and psychological sciences is the cubic intuitionistic fuzzy graph, which plays an important role in various fields such as computer science, psychology, medicine, and political sciences. It is also used to find effective people in an organization or social institution. In this research endeavor, we embark upon elucidating the innovative notion of a cubic intuitionistic planar graph, delving into its intricate properties and attributes. Additionally, we unveil the novel concept of a cubic intuitionistic dual graph, thus enriching the realm of graph theory with further profundity. Furthermore, our exploration encompasses the elucidation of other pertinent terminologies, such as cubic intuitionistic multi-graphs, along with the categorization of edges into the distinct classifications of strong and weak edges. Moreover, we discern the concept of the degree of planarity within the context of CIPG and unveil the notion of strong and weak faces. Additionally, we delve into the construction of cubic intuitionistic dual graphs, which can be realized in cases where the initial graph is planar or possesses a degree of planarity 0.67. Notably, we furnish the exposition with a comprehensive discussion on noteworthy findings and substantial results pertaining to these captivating topics, contributing valuable insights on the field of graph theory. Last, we shall endeavor to exemplify the practical relevance and importance of our research by presenting an illuminating real-world application, thus demonstrating the tangible impact and significance of our endeavors in this research article.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cubic directed graphs with application;Journal of Applied Mathematics and Computing;2024-03-25

2. Generalized connectivity in cubic fuzzy graphs with application in the trade deficit problem;Frontiers in Physics;2024-03-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3