Research on the evolution of netizens’ comment focus in university online public opinion: KTF-BTM topic model with topic-temporal-focus framework

Author:

Zhang Yang,Lian Ji-Qing,Li Ren-De,Duan Hong-Tao

Abstract

Nowadays, Study of comments in MicroBlog online public opinion is of great significance for relevant departments in managing public opinion, due to the increasing influence of online public opinion on the Internet. This paper presents a method for studying the evolutionary characteristics of netizens’ comment focus in university online public opinion. This method is based on a three-stage framework called Topic-Temporal-Focus. Firstly, in the topic mining stage, the KTF-BTM model is proposed for topic recognition, which effectively improves the quality of analysis. Secondly, in the temporal segmentation stage, time periods are divided into 4-hour intervals, and the identified topics are paired with each comment text to generate a topic-temporal list. Finally, in the focus recognition stage, the content and evolution patterns of netizens’ comment focus within shorter time sequences are explored by analyzing the data characteristics of the topic-temporal list. Experimental results show that the proposed KTF-BTM model significantly enhances topic recognition quality for short texts. The Topic-Temporal-Focus framework overcomes the challenge of sparse comment text data within shorter time periods and effectively classifies topic evolution within limited time sequences. This research work serves as a valuable contribution towards understanding the evolutionary characteristics of netizens’ focal points in university online public opinion.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference30 articles.

1. Latent dirichlet allocation;Blei;J Machine Learn Res,2003

2. A dirichlet multinomial mixture model-based approach for short text clustering;Yin,2014

3. A comparison of the performance of latent dirichlet allocation and the dirichalet multinomial mixture model on short-text;Jocelyn,2016

4. A biterm topic model for short texts;Yan,2013

5. Precise prediction modeling of university social network public opinion evolution trend;He,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3