Sub-background radiation exposure at the LNGS underground laboratory: dosimetric characterization of the external and underground facilities

Author:

Ampollini Marco,Anello Pasqualino,Balata Marco,Bortolin Emanuela,Chiarelli Federico,Chiti Daniele,Chiti Maurizio,De Angelis Cinzia,D’Imperio Giulia,Donghia Raffaella,Esposito Giuseppe,Ferella Francesco,Galante Angelo,Laubenstein Matthias,Morciano Patrizia,Nisi Stefano,Nuccetelli Cristina,Quattrini Maria Cristina,Tabocchini Maria Antonella,Tomei Claudia

Abstract

Radiobiological studies conducted in Deep Underground Laboratories allow to improve the knowledge of the biological effects induced by ionizing radiation at low doses/dose rates. At the Gran Sasso National Laboratory of the Italian Institute of Nuclear Physics we can study the possible differences in behavior between parallel biological systems, one maintained in a Reference-Radiation Environment (RRE, external) and the other maintained in an extremely Low-Radiation Environment (LRE, underground), in the absence of pressure changes, the RRE and LRE laboratories being at the same altitude. For these investigations, it is mandatory to evaluate the dose rate values at RRE and LRE. The aim of our work is to provide a comprehensive dosimetric analysis for external and underground laboratories. Measurements of the different low Linear Energy Transfer (LET) components at RRE and LRE were performed using different detectors. Gamma dose rates were 31 nSv/h at RRE and 27 nSv/h at LRE respectively. The muon dose rate was 47 nSv/h at RRE and negligible at LRE (less than pGy/h). Dosimetric measurements were also carried out to characterize the devices used to modulate the gamma dose rate, namely, a gamma source irradiator (to increase the dose rate by about 90 nSv/h) and shields (of iron at LRE and lead at RRE). Using the iron shield at LRE a dose reduction factor of about 20, compared to the RRE, was obtained for the low LET components; inside the lead shield at RRE the gamma component was negligible compared to the muonic component. Radon activity concentrations were approximately of 20 Bq/m3 at both LRE and RRE. The intrinsic contribution of radioactivity in the experimental set up was of 0.25 nGy/h, as evaluated with a GEANT4-simulation, using as input the measured activity concentrations. GEANT4 simulations were also performed to calculate the neutron dose rate at RRE, yielding a value of 1.4 nGy/h, much larger than that at LRE (which is less than pGy/h). In conclusion, RRE and LRE are currently characterized and equipped to perform radiobiological studies aimed at understanding the involvement of the different low LET components in determining the response of biological systems.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3