Modelling exposure between populations using networks of mobility during COVID-19

Author:

Takko Tuomas,Bhattacharya Kunal,Kaski Kimmo

Abstract

The use of mobile phone call detail records and device location data for the calling patterns, movements, and social contacts of individuals, have proven to be valuable for devising models and understanding of their mobility and behaviour patterns. In this study we investigate weighted exposure networks of human daily activities in the capital region of Finland as a proxy for contacts between postal code areas during the pre-pandemic year 2019 and pandemic years 2020, 2021 and early 2022. We investigate the suitability of gravity and radiation type models for reconstructing the exposure networks based on geo-spatial and population mobility information. For this we use a mobile phone dataset of aggregated daily visits from a postal code area to cellphone grid locations, and treat it as a bipartite network to create weighted one mode projections using a weighted co-occurrence function. We fit a classical gravity model and a radiation model to the averaged weekly and yearly projection networks with geo-spatial and socioeconomic variables of the postal code areas and their populations. We also consider an extended gravity type model comprising of additional postal area information such as distance via public transportation and population density. The results show that the co-occurrence of human activities, or exposure, between postal code areas follows both the gravity and radiation type interactions, once fitted to the empirical network. The effects of the pandemic beginning in 2020 can be observed as a decrease of the overall activity as well as of the exposure of the projected networks. These effects can also be observed in the network structure as changes towards lower clustering and higher assortativity. Evaluating the parameters of the fitted models over time shows on average a shift towards a higher exposure of areas in closer proximity as well as a higher exposure towards areas with larger population. In general, the results show that the postal code level networks changed to be more proximity weighted after the pandemic began, following the government imposed non-pharmaceutical interventions, with differences based on the geo-spatial and socioeconomic structure of the areas.

Funder

Suomalainen Tiedeakatemia

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference62 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3