Bubble Dynamics in Stationary Two-phase Flow Through Disordered Porous Media

Author:

Sales J. M. A.,Seybold H. J.,Oliveira C. L. N.,Andrade J. S.

Abstract

Two-phase flow through porous media leads to the formation of drops and fingers, which eventually break and merge or may be trapped behind obstacles. This complex dynamical behavior highly influences macroscopic properties such as the effective permeability and it also creates characteristic fluctuations in the velocity fields of the two phases, as well as in their relative permeability curves. In order to better understand how the microscopic behavior of the flow affects macroscopic properties of two phases, we simulate the velocity fields of two immiscible fluids flowing through a two-dimensional porous medium. By analyzing the fluctuations in the velocity fields of the two phases, we find that the system is ergodic for large volume fractions of the less viscous phase and high capillary numbers Ca. We also see that the distribution of drop sizes m follows a power-law scaling, P(m)mξ. The exponent ξ depends on the capillary number. Below a characteristic capillary number, namely Ca* ≈ 0.046, the drops are large and cohesive with a constant scaling exponent ξ ≈ 1.23 ± 0.03. Above the characteristic capillary number Ca*, the flow is dominated by many small droplets and few finger-like spanning clusters. In this regime the exponent ξ increases approaching 2.05 ± 0.03 in the limit of infinite capillary number. Our analysis also shows that the temporal mean velocity of the entire mixture can be described by a generalization of Darcy’s law of the form v̄(m)(P)β where the exponent β is sensitive to the surface tension between the two phases. In the limit of infinite capillary numbers the mobility term increases exponentially with the saturation of the less viscous phase. This result agrees with previous observations for effective permeabilities found in dissolved-gas-driven reservoirs.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3