Traffic safety assessment method of the immersed tunnel based on small target visual recognition image

Author:

Yang Meng,Lu Shanfeng,Ding Hao,Chen Jianzhong

Abstract

The quality of lighting installation performance has a direct impact on the traffic safety of immersed tunnels. To effectively investigate and judge the traffic safety of immersed tunnels having different lighting installations, a traffic safety assessment method for immersed tunnels based on lighting performance degradation was put forward in this study by using big data technology. Numerical simulation was used to simulate the lighting environment in an immersed tunnel under different conditions of lighting performance degradation, conduct the small target recognition test in a physical tunnel, and calculate the traffic safety factor; then, a real-time kinematic assessment model of traffic safety in immersed tunnels was built in combination with the key index factors influencing lighting installations in immersed tunnels. The test results showed that the performance degradation of lighting installations positively correlated with the visual cognition of drivers and passengers. long short-term memory neural network model can effectively assess the traffic safety of immersed tunnels, and the root mean square error (RMSE) and coefficient of determination of the model were separately 1.029 and 0.95, which were superior to the RMSE and coefficient of determination of random forest and recurrent neural network model, and the running time was often less than 1min, complying with the rea; -time assessment requirements; the boundary value of the traffic safety factor of immersed tunnels was 0.6304, and if a value was less than the boundary value, it indicated that the performance of lighting installations was not good and might pose a threat to traffic safety. The research results provided a new perspective for the status assessment of lighting installations in immersed tunnels and also offered a theoretical basis for fine maintenance and repairs of lighting installations.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3