Pulse shape discrimination in an organic scintillation phoswich detector using machine learning techniques

Author:

Lee Yujin,Kim Jinyoung,Koh Byoung-cheol,Yoon Young Soo,Ha Chang Hyon

Abstract

We developed machine learning algorithms for distinguishing scintillation signals from a plastic-liquid coupled detector known as a phoswich. The challenge lies in discriminating signals from organic scintillators with similar shapes and short decay times. Using a single-readout phoswich detector, we successfully identified γ radiation signals from two scintillating components. Our Boosted Decision Tree algorithm demonstrated a maximum discrimination power of 3.02 ± 0.85 standard deviation in the 950 keV region, providing an efficient solution for self-shielding and enhancing radiation detection capabilities.

Publisher

Frontiers Media SA

Reference23 articles.

1. Review of plastic and liquid scintillation dosimetry for photon, electron, and proton therapy;Beaulieu;Phys Med Biol,2016

2. Response and calibration of organic scintillators for gamma-ray spectroscopy up to 15-mev range;Nattress;Nucl Instr Methods Phys Res Section A: Acc Spectrometers, Detectors Associated Equipment,2017

3. Scintillation counters in modern high-energy physics experiments (review);Kharzheev;Phys Particles Nuclei,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3