Design study of a HPGe detector array for β-decay investigation in laboratory ECR plasmas

Author:

Naselli Eugenia,Santonocito Domenico,Amaducci Simone,Celona Luigi,Galatà Alessio,Goasduff Alain,Mauro Giorgio Sebastiano,Mazzaglia Maria,Mishra Bharat,Napoli Daniel R.,Pidatella Angelo,Torrisi Giuseppe,Mascali David

Abstract

In the frame of the PANDORA project, a new experimental approach aims at measuring in-plasma β-decay rate as a function of thermodynamical conditions of the environment, namely a laboratory magnetized plasma able to mimic some stellar-like conditions. The decay rates (expected to change dramatically as a function of the ionization state) will be measured as a function of the charge state distribution of the in-plasma ions. The new experimental approach aims at correlating the plasma environment and the decay rate. This can be performed by simultaneously identifying and discriminating—through an innovative multi-diagnostic system working synergically with a γ-ray detection system —the photons emitted by the plasma and γ-rays emitted after the isotope β-decay. In this study, the numerical simulations supporting the design of the γ-ray detector array, including a statistical significance study to check the feasibility of measuring the in-plasma decay rates, are presented. Geant4 simulations focused on the design of the array of γ-ray detectors and the evaluation of total efficiency depending on the detector type and the optimal displacement of detectors around the trap (including collimation systems and shielding). The simulation results showed that, due to technical limitations in the number of apertures that can be created in the magnetic trap, the best compromise is to use 14 HPGe (70% of relative efficiency) detectors surrounding the magnetic trap. The HPGe detectors were chosen for their excellent energy resolution (0.2% @ 1 MeV), since the harsh environment (the background is represented by the intense plasma self-emission) strongly affects the signal-to-background ratio. Once determined the total photopeak efficiency (0.1–0.2%), the sensitivity of the PANDORA experiment was checked in a “virtual experimental run,” by exploring the measurability of isotope decay rates for the first three physical cases of PANDORA: 176Lu, 134Cs and 94Nb. The preliminary results demonstrated the feasibility of the measurement in terms of the signal-to-background ratio and significance that it is possible to reach. The results indicated that experimental run durations could take from several days to 3 months, depending on the isotope under investigation, thus shedding new light on the role of weak interactions in stellar nucleosynthesis.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3