Thermodynamic and Mechanical Properties of DMPC/Cholesterol Mixed Monolayers at Physiological Conditions

Author:

Bañuelos-Frias Alan,Castañeda-Montiel Victor Manuel,Alvizo-Paez Edgar Rogelio,Vazquez-Martinez Emmanuel Antonio,Gomez Eduardo,Ruiz-Garcia Jaime

Abstract

One of the main known effects of cholesterol is to rigidify the cell membrane throughout the so-called condensing effect. Although many studies have been done in mixtures of cholesterol with different membrane lipids, there are not many studies in a wide concentration range of cholesterol or at physiological conditions. In this work, we studied mixtures of DMPC/Cholesterol monolayers to determine the effect of cholesterol, from very low to physiological concentrations and two pHs. We use a Langmuir balance and Brewster angle microscopy to study their thermodynamic behavior at 37.0 ± 0.1°C at the air/solution interface. From the analysis of the (π−A) isotherms, we determined the excess area and the compressibility elastic modulus to determine the monolayers mechanical properties. Surprisingly, we found three main effects of cholesterol: The first one is a fluidization effect of the monolayer at all cholesterol concentrations. The second effect is the so-called condensing effect that appears due to the non-ideality of the mixture. The third effect is a stiffness of the monolayer as the cholesterol concentration increases. These effects are stronger in pure water, pH ≈ 6.6, than on buffer at physiological pH = 7.4. We also found that all mixtures are thermodynamically stable at all concentrations at a surface pressure of 30.1 ± 1.6 and 27.4 ± 3.2 mN/m in pure water and buffer, respectively. Furthermore, we compared this stability with a fatty acid monolayer that shows a much lower surface pressure equilibrium value that DMPC or its mixtures with cholesterol, indicating a possibly reason why double chain lipids are better than single chain lipids to made up the cell membrane.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3