Effects of hypomagnetic field on adult hippocampal neurogenic niche and neurogenesis in mice

Author:

Luo Yukai,Zhan Aisheng,Fan Yunchang,Tian Lanxiang

Abstract

The elimination of geomagnetic field (GMF), also called hypomagnetic field (HMF), is one of the major environmental hazards faced by deep-space astronauts and the workers in magnetically shielded rooms on Earth. We previously reported that long-term HMF exposure impaired adult hippocampal neurogenesis (AHN) and cognition by reducing endogenous reactive oxygen species (ROS) levels in adult neural stem cells (aNSCs). In addition to the aNSCs themselves, adult neurogenesis is also regulated by the local environment, i.e., the neurogenic niche. Neurogenic niche is mainly composed of astrocyte, microglia, and vascular system. However, whether the HMF exposure affects the neurogenic niche in hippocampus remains unknown. In this study, we investigated the effects of the HMF exposure on the neurogenic niche and adult neurogenesis in hippocampus, as well as the cognitive function in mice. The HMF is simulated by using the newly upgraded double-wrapped coils, different with our previous coils, which are capable of providing a very low-strength static magnetic field and identical electromagnetic field background between the HMF group and the GMF group. Here, we for the first time clearly revealed that 8-week HMF exposure significantly induced microglia activation and increased the number of astrocytes in hippocampal dentate gyrus (DG), suggesting the abnormalities in the neurogenic niche. Meanwhile, 8-week HMF exposure also markedly reduced proliferation and differentiation of aNSCs in the DG, and impaired the cognitive behavior of mice, consistent with our previous findings. In addition, we also found that 8-week HMF exposure significantly induced anxiety-like behaviors of mice. In summary, this study indicates that 8-week HMF exposure induces the neurogenic niche abnormalities, contributing to the AHN impairments, thus leads to the cognitive dysfunction and anxiety-like behaviors in mice.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3