Linac-integrated on-board spectral-CT/CBCT imaging using a photon-counting detector: a Monte Carlo study

Author:

Ye Fengsong,Wang Hui,Fang Jianqiang

Abstract

Purpose: To investigate the feasibility of dual-modal on-board spectral-CT/CBCT imaging using a CZT photon-counting detector mounted on a Linac by Monte Carlo simulations.Methods: In this proof-of-concept study, the Monte Carlo software platform of Geant4 Application for Tomography Emission (GATE) and a high-performance computing hardware platform were utilized to design and validate the novel on-board spectral-CT and conventional CBCT imaging system using a single CZT detector integrated into a Linac. Through the combined use of the Monte Carlo simulation and the charge transportation model based on a diffusion equation, we simulated x-ray energy spectra of the CZT detector with pixel sizes ranging of 200–1,000 μm, based on which the optimized pixel size of the detector was determined. Spatial resolution of the CBCT imaging of the system was evaluated by oversampling a tilted tungsten wire. A PMMA phantom, containing calcium and contrast elements of iodine, gadolinium, and gold, was simulated to demonstrate the spectral CT imaging capability of the system by using the K-edge spectral imaging method.Results: Considering the trade-off between the photon-peak efficiency and spatial resolution of the detector, the pixel size of the CZT detector was determined to be 400 µm. The spatial resolution of the CBCT imaging of the system was estimated to be 19.2 lp/cm@10% modulation transfer function. The CBCT imaging of the system provided sufficient structural details of the phantom with a high image contrast. Compared to the CBCT image of the phantom, the K-edge spectral CT images differentiated the four elements contained within the phantom very well.Conclusion: The simulation results demonstrated the feasibility of dual-modal on-board spectral-CT/CBCT imaging by using a single CZT photon counting detector in a Linac.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3