A Quantum-Inspired Tensor Network Algorithm for Constrained Combinatorial Optimization Problems

Author:

Hao Tianyi,Huang Xuxin,Jia Chunjing,Peng Cheng

Abstract

Combinatorial optimization is of general interest for both theoretical study and real-world applications. Fast-developing quantum algorithms provide a different perspective on solving combinatorial optimization problems. In this paper, we propose a quantum-inspired tensor-network-based algorithm for general locally constrained combinatorial optimization problems. Our algorithm constructs a Hamiltonian for the problem of interest, effectively mapping it to a quantum problem, then encodes the constraints directly into a tensor network state and solves the optimal solution by evolving the system to the ground state of the Hamiltonian. We demonstrate our algorithm with the open-pit mining problem, which results in a quadratic asymptotic time complexity. Our numerical results show the effectiveness of this construction and potential applications in further studies for general combinatorial optimization problems.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference30 articles.

1. Sustainable Supply Chain Network Design: An Optimization-Oriented Review;Eskandarpour;Omega,2015

2. Fast Approximation Algorithms for Computing Constrained Minimum Spanning Trees;Yao,2017

3. Combinatorial Optimization

4. An Effective Heuristic Algorithm for the Traveling-Salesman Problem;Lin;Operations Res,1973

5. Quantum Algorithms: An Overview;Montanaro;Npj Quan Inf,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Variatsionnaya kvantovaya optimizatsiya otkrytogo kar'era;Письма в Журнал экспериментальной и теоретической физики;2024-12-15

2. Quantum-Assisted Open-Pit Optimization;JETP Letters;2024-03

3. A Quantum-Based Beetle Swarm Optimization Algorithm for Numerical Optimization;Applied Sciences;2023-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3