Author:
Li Xinan,Shen Zhixiong,Tan Qinggui,Hu Wei
Abstract
Metasurfaces supply a planar approach for flexible wavefront manipulation, thus facilitating the integration and minimization of optical elements, especially in the terahertz (THz) range. High efficient THz metadevices are highly pursued at present. Here, we propose a bilayer design to improve the efficiency of metadevice. Two silicon pillar arrays with distinguishing geometries are integrated on single silicon substrate. On one side, elliptical silicon pillars, with geometry optimized for the target frequency, are spatially orientated to realize the desired Pancharatnam-Berry phase. On the other side, uniform circular silicon pillars are set to suppress the reflection. With this design, versatile metadevices such as lens, lens array, polarization fork grating, Bessel vortex generator, and Airy beam generator are demonstrated. Maximum efficiency up to 95% for the target frequency and excellent design flexibility are verified. It provides a practical strategy for the generation of compact and high-efficiency THz metadevices, which suit for high-performance THz imaging and communication apparatuses.
Funder
National Natural Science Foundation of China
National Key Laboratory Foundation of China
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献